Congruences for sixth order mock theta functions $ \lambda(q) $ and $ \rho(q) $
نویسندگان
چکیده
<p style='text-indent:20px;'>Ramanujan introduced sixth order mock theta functions <inline-formula><tex-math id="M3">$ \lambda(q) $</tex-math></inline-formula> and id="M4">$ \rho(q) defined as:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> $ \begin{align*} &amp; = \sum\limits_{n 0}^{\infty}\frac{(-1)^n q^n (q;q^2)_n}{(-q;q)_n},\\ 0}^{\infty}\frac{ q^{n(n+1)/2} (-q;q)_n}{(q;q^2)_{n+1}}, \end{align*} </tex-math></disp-formula></p><p style='text-indent:20px;'>listed in the Lost Notebook. In this paper, we present some Ramanujan-like congruences also find their infinite families modulo 12 for coefficients of mentioned above.</p>
منابع مشابه
Effective Congruences for Mock Theta Functions
LetM(q) = ∑ c(n)q be one of Ramanujan’s mock theta functions. We establish the existence of infinitely many linear congruences of the form:
متن کاملOn Two Fifth Order Mock Theta Functions
We consider the fifth order mock theta functions χ0 and χ1, defined by Ramanujan, and find identities for these functions, which relate them to indefinite theta functions. Similar identities have been found by Andrews for the other fifth order mock theta functions and the seventh order functions.
متن کاملThe Tenth Order Mock Theta Functions Revisited
In this paper we consider the first four of the eight identities between the tenth order mock theta functions, found in Ramanujan’s lost notebook. These were originally proved by Choi. Here we give an alternative proof.
متن کاملRamanujan's mock theta functions.
In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268-277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic research archive
سال: 2021
ISSN: ['2688-1594']
DOI: https://doi.org/10.3934/era.2021084